Last updated: 2023-01-31
Checks: 7 0
Knit directory: R_workflowr/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20221115) was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version ab25732. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish or
wflow_git_commit). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: R_workflowr/.RData
Ignored: R_workflowr/.Rhistory
Ignored: R_workflowr/.Rprofile
Ignored: R_workflowr/.Rproj.user/
Ignored: R_workflowr/_workflowr.yml
Ignored: analyses/annotation/output/
Ignored: analyses/cactus/data/
Ignored: analyses/pangenome/output/
Ignored: data/USGS_SpeciesRanges/
Ignored: data/genomes/
Ignored: data/gff/
Ignored: data/tree/
Untracked files:
Untracked: R_workflowr/.gitattributes
Untracked: R_workflowr/.gitignore
Untracked: R_workflowr/R_workflowr.Rproj
Untracked: R_workflowr/analysis/
Untracked: R_workflowr/ng_curves.html
Untracked: R_workflowr/renv.lock
Untracked: R_workflowr/renv/
Untracked: analyses/mMyoLuc1/
Untracked: analyses/makeHub/
Untracked: analyses/tmp-mMyoLuc1/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
There are no past versions. Publish this analysis with
wflow_publish() to start tracking its development.
library(tidyverse)
Warning in system("timedatectl", intern = TRUE): running command 'timedatectl'
had status 1
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
✔ ggplot2 3.4.0 ✔ purrr 0.3.5
✔ tibble 3.1.8 ✔ dplyr 1.0.10
✔ tidyr 1.2.1 ✔ stringr 1.4.1
✔ readr 2.1.3 ✔ forcats 0.5.2
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
library(pafr)
our_genomes = c(
"Myotis_auriculus",
"Myotis_californicus",
"Myotis_occultus",
"Myotis_lucifugus",
"Myotis_yumanensis",
"Myotis_volans",
"Myotis_velifer",
"Myotis_evotis",
"Myotis_thysanodes"
)
species_color = ggsci::pal_d3(palette = "category20")(length(our_genomes)+1) %>%
set_names(., c(our_genomes, "Other"))
species_color["Myotis_evotis"] = "#17BECFFF"
species_color["Other"] = "#7F7F7FFF"
table.myoAui <- read_csv("../../analyses/pangenome/output/flip_table/mMyoOcc1_mMyoAui1.csv")%>% arrange(tnum, qnum)
Rows: 104 Columns: 5
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): qname, tname
dbl (2): qnum, tnum
lgl (1): flip
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
table.myoCai <- read_csv("../../analyses/pangenome/output/flip_table/mMyoOcc1_mMyoCai1.csv")%>% arrange(tnum, qnum)
Rows: 54 Columns: 5
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): qname, tname
dbl (2): qnum, tnum
lgl (1): flip
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
table.myoOcc <- read_csv("../../analyses/pangenome/output/flip_table/mMyoOcc1_mMyoOcc1.csv")%>% arrange(tnum, qnum)
Rows: 69 Columns: 5
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): qname, tname
dbl (2): qnum, tnum
lgl (1): flip
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
table.myoLuc <- read_csv("../../analyses/pangenome/output/flip_table/mMyoOcc1_mMyoLuc1.csv")%>% arrange(tnum, qnum)
Rows: 127 Columns: 5
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): qname, tname
dbl (2): qnum, tnum
lgl (1): flip
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
table.myoYum <- read_csv("../../analyses/pangenome/output/flip_table/mMyoOcc1_mMyoYum1.cleaned.csv")%>% arrange(tnum, qnum)
Rows: 306 Columns: 5
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): qname, tname
dbl (2): qnum, tnum
lgl (1): flip
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
table.myoVol <- read_csv("../../analyses/pangenome/output/flip_table/mMyoOcc1_mMyoVol1.csv")%>% arrange(tnum, qnum)
Rows: 52 Columns: 5
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): qname, tname
dbl (2): qnum, tnum
lgl (1): flip
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
table.myoVel <- read_csv("../../analyses/pangenome/output/flip_table/mMyoOcc1_mMyoVel1.csv")%>% arrange(tnum, qnum)
Rows: 64 Columns: 5
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): qname, tname
dbl (2): qnum, tnum
lgl (1): flip
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
table.myoEvo <- read_csv("../../analyses/pangenome/output/flip_table/mMyoOcc1_mMyoEvo1.csv")%>% arrange(tnum, qnum)
Rows: 60 Columns: 5
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): qname, tname
dbl (2): qnum, tnum
lgl (1): flip
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
table.myoThy <- read_csv("../../analyses/pangenome/output/flip_table/mMyoOcc1_mMyoThy1.csv")%>% arrange(tnum, qnum)
Rows: 45 Columns: 5
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): qname, tname
dbl (2): qnum, tnum
lgl (1): flip
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
table.batgenomes <- Reduce(
f = function(x,y) {full_join(x=x,y=y, by=c("tname", "tnum"))},
x = list(table.myoAui%>% group_by(tname, tnum) %>% summarize(myoAui.scaff = paste(qname, collapse=","), myoAui.nscaff=n_distinct(qname)),
table.myoCai%>% group_by(tname, tnum) %>% summarize(myoCai.scaff = paste(qname, collapse=","), myoCai.nscaff=n_distinct(qname)),
table.myoOcc%>% group_by(tname, tnum) %>% summarize(myoOcc.scaff = paste(qname, collapse=","), myoOcc.nscaff=n_distinct(qname)),
table.myoLuc%>% group_by(tname, tnum) %>% summarize(myoLuc.scaff = paste(qname, collapse=","), myoLuc.nscaff=n_distinct(qname)),
table.myoYum%>% group_by(tname, tnum) %>% summarize(myoYum.scaff = paste(qname, collapse=","), myoYum.nscaff=n_distinct(qname)),
table.myoVol%>% group_by(tname, tnum) %>% summarize(myoVol.scaff = paste(qname, collapse=","), myoVol.nscaff=n_distinct(qname)),
table.myoVel%>% group_by(tname, tnum) %>% summarize(myoVel.scaff = paste(qname, collapse=","), myoVel.nscaff=n_distinct(qname)),
table.myoEvo%>% group_by(tname, tnum) %>% summarize(myoEvo.scaff = paste(qname, collapse=","), myoEvo.nscaff=n_distinct(qname)),
table.myoThy%>% group_by(tname, tnum) %>% summarize(myoThy.scaff = paste(qname, collapse=","), myoThy.nscaff=n_distinct(qname)))
) %>%
arrange(tnum) %>%
select(tname, tnum, everything())
`summarise()` has grouped output by 'tname'. You can override using the
`.groups` argument.
`summarise()` has grouped output by 'tname'. You can override using the
`.groups` argument.
`summarise()` has grouped output by 'tname'. You can override using the
`.groups` argument.
`summarise()` has grouped output by 'tname'. You can override using the
`.groups` argument.
`summarise()` has grouped output by 'tname'. You can override using the
`.groups` argument.
`summarise()` has grouped output by 'tname'. You can override using the
`.groups` argument.
`summarise()` has grouped output by 'tname'. You can override using the
`.groups` argument.
`summarise()` has grouped output by 'tname'. You can override using the
`.groups` argument.
`summarise()` has grouped output by 'tname'. You can override using the
`.groups` argument.
table.batgenomes
# A tibble: 69 × 20
# Groups: tname [69]
tname tnum myoAu…¹ myoAu…² myoCa…³ myoCa…⁴ myoOc…⁵ myoOc…⁶ myoLu…⁷ myoLu…⁸
<chr> <dbl> <chr> <int> <chr> <int> <chr> <int> <chr> <int>
1 SUPER_… 1 SUPER_… 2 SUPER_… 4 SUPER_… 1 SUPER_… 6
2 SUPER_… 2 SUPER_… 1 SUPER_… 1 SUPER_… 1 SUPER_… 1
3 SUPER_… 3 SUPER_… 7 SUPER_… 1 SUPER_… 1 SUPER_… 2
4 SUPER_… 4 SUPER_… 2 SUPER_… 1 SUPER_… 1 SUPER_… 11
5 SUPER_… 5 SUPER_… 4 SUPER_… 3 SUPER_… 1 SUPER_… 2
6 SUPER_… 6 SUPER_… 3 SUPER_… 1 SUPER_… 1 SUPER_… 2
7 SUPER_… 7 SUPER_… 3 SUPER_… 2 SUPER_… 1 SUPER_… 2
8 SUPER_… 8 SUPER_… 2 SUPER_… 1 SUPER_… 1 SUPER_… 1
9 SUPER_… 9 SUPER_… 10 SUPER_… 4 SUPER_… 1 SUPER_… 5
10 SUPER_… 10 SUPER_… 5 SUPER_… 2 SUPER_… 1 SUPER_… 4
# … with 59 more rows, 10 more variables: myoYum.scaff <chr>,
# myoYum.nscaff <int>, myoVol.scaff <chr>, myoVol.nscaff <int>,
# myoVel.scaff <chr>, myoVel.nscaff <int>, myoEvo.scaff <chr>,
# myoEvo.nscaff <int>, myoThy.scaff <chr>, myoThy.nscaff <int>, and
# abbreviated variable names ¹myoAui.scaff, ²myoAui.nscaff, ³myoCai.scaff,
# ⁴myoCai.nscaff, ⁵myoOcc.scaff, ⁶myoOcc.nscaff, ⁷myoLuc.scaff,
# ⁸myoLuc.nscaff
sessionInfo()
R version 4.2.2 Patched (2022-11-10 r83330)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.5 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] pafr_0.0.2 forcats_0.5.2 stringr_1.4.1 dplyr_1.0.10
[5] purrr_0.3.5 readr_2.1.3 tidyr_1.2.1 tibble_3.1.8
[9] ggplot2_3.4.0 tidyverse_1.3.2
loaded via a namespace (and not attached):
[1] Rcpp_1.0.9 lubridate_1.9.0 assertthat_0.2.1
[4] rprojroot_2.0.3 digest_0.6.30 utf8_1.2.2
[7] R6_2.5.1 cellranger_1.1.0 backports_1.4.1
[10] reprex_2.0.2 evaluate_0.18 httr_1.4.4
[13] pillar_1.8.1 rlang_1.0.6 googlesheets4_1.0.1
[16] readxl_1.4.1 rstudioapi_0.14 jquerylib_0.1.4
[19] rmarkdown_2.17 googledrive_2.0.0 bit_4.0.4
[22] munsell_0.5.0 broom_1.0.1 compiler_4.2.2
[25] httpuv_1.6.6 modelr_0.1.9 xfun_0.34
[28] pkgconfig_2.0.3 htmltools_0.5.4 tidyselect_1.2.0
[31] workflowr_1.7.0 fansi_1.0.3 crayon_1.5.2
[34] withr_2.5.0 tzdb_0.3.0 dbplyr_2.2.1
[37] later_1.3.0 grid_4.2.2 jsonlite_1.8.3
[40] gtable_0.3.1 lifecycle_1.0.3 DBI_1.1.3
[43] git2r_0.30.1 magrittr_2.0.3 scales_1.2.1
[46] vroom_1.6.0 cli_3.4.1 stringi_1.7.8
[49] cachem_1.0.6 fs_1.5.2 promises_1.2.0.1
[52] xml2_1.3.3 bslib_0.4.1 ellipsis_0.3.2
[55] generics_0.1.3 vctrs_0.5.0 ggsci_2.9
[58] tools_4.2.2 bit64_4.0.5 glue_1.6.2
[61] hms_1.1.2 parallel_4.2.2 fastmap_1.1.0
[64] yaml_2.3.6 timechange_0.1.1 colorspace_2.0-3
[67] gargle_1.2.1 rvest_1.0.3 knitr_1.40
[70] haven_2.5.1 sass_0.4.2